Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1072, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316789

RESUMO

Genome-wide chromatin conformation capture assays provide formidable insights into the spatial organization of genomes. However, due to the complexity of the data structure, their integration in multi-omics workflows remains challenging. We present data structures, computational methods and visualization tools available in Bioconductor to investigate Hi-C, micro-C and other 3C-related data, in R. An online book ( https://bioconductor.org/books/OHCA/ ) further provides prospective end users with a number of workflows to process, import, analyze and visualize any type of chromosome conformation capture data.


Assuntos
Cromatina , Cromossomos , Estudos Prospectivos , Cromatina/genética , Cromossomos/genética , Genoma , Conformação Molecular
2.
Evol Appl ; 15(11): 1730-1748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426129

RESUMO

The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.

3.
Methods Mol Biol ; 2301: 1-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34415528

RESUMO

Over the last decade, genomic proximity ligation approaches have reshaped our vision of chromosomes 3D organizations, from bacteria nucleoids to larger eukaryotic genomes. The different protocols (3Cseq, Hi-C, TCC, MicroC [XL], Hi-CO, etc.) rely on common steps (chemical fixation digestion, ligation…) to detect pairs of genomic positions in close proximity. The most common way to represent these data is a matrix, or contact map, which allows visualizing the different chromatin structures (compartments, loops, etc.) that can be associated to other signals such as transcription, protein occupancy, etc. as well as, in some instances, to biological functions.In this chapter we present and discuss the filtering of the events recovered in proximity ligation experiments as well as the application of the balancing normalization procedure on the resulting contact map. We also describe a computational tool for visualizing normalized contact data dubbed Scalogram.The different processes described here are illustrated and supported by the laboratory custom-made scripts pooled into "hicstuff," an open-access python package accessible on github ( https://github.com/koszullab/hicstuff ).


Assuntos
Cromossomos , Cromatina/genética , Genoma , Genômica
4.
Sci Adv ; 7(41): eabg4216, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613768

RESUMO

Bdelloid rotifers are notorious as a speciose ancient clade comprising only asexual lineages. Thanks to their ability to repair highly fragmented DNA, most bdelloid species also withstand complete desiccation and ionizing radiation. Producing a well-assembled reference genome is a critical step to developing an understanding of the effects of long-term asexuality and DNA breakage on genome evolution. To this end, we present the first high-quality chromosome-level genome assemblies for the bdelloid Adineta vaga, composed of six pairs of homologous (diploid) chromosomes with a footprint of paleotetraploidy. The observed large-scale losses of heterozygosity are signatures of recombination between homologous chromosomes, either during mitotic DNA double-strand break repair or when resolving programmed DNA breaks during a modified meiosis. Dynamic subtelomeric regions harbor more structural diversity (e.g., chromosome rearrangements, transposable elements, and haplotypic divergence). Our results trigger the reappraisal of potential meiotic processes in bdelloid rotifers and help unravel the factors underlying their long-term asexual evolutionary success.

6.
Commun Biol ; 4(1): 104, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483589

RESUMO

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Assuntos
Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Polydnaviridae/genética , Vespas/genética , Animais , Sequência de Bases , Sequência Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiose , Sintenia , Vespas/virologia
7.
Nat Commun ; 11(1): 5795, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199682

RESUMO

Chromosomes of all species studied so far display a variety of higher-order organisational features, such as self-interacting domains or loops. These structures, which are often associated to biological functions, form distinct, visible patterns on genome-wide contact maps generated by chromosome conformation capture approaches such as Hi-C. Here we present Chromosight, an algorithm inspired from computer vision that can detect patterns in contact maps. Chromosight has greater sensitivity than existing methods on synthetic simulated data, while being faster and applicable to any type of genomes, including bacteria, viruses, yeasts and mammals. Our method does not require any prior training dataset and works well with default parameters on data generated with various protocols.


Assuntos
Cromossomos/genética , Computadores , Reconhecimento Automatizado de Padrão , Algoritmos , Cromossomos Fúngicos/genética , Cromossomos Humanos/genética , Genoma Fúngico , Humanos , Saccharomyces cerevisiae/genética , Fluxo de Trabalho
8.
Genome Biol ; 21(1): 148, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552806

RESUMO

Hi-C exploits contact frequencies between pairs of loci to bridge and order contigs during genome assembly, resulting in chromosome-level assemblies. Because few robust programs are available for this type of data, we developed instaGRAAL, a complete overhaul of the GRAAL program, which has adapted the latter to allow efficient assembly of large genomes. instaGRAAL features a number of improvements over GRAAL, including a modular correction approach that optionally integrates independent data. We validate the program using data for two brown algae, and human, to generate near-complete assemblies with minimal human intervention.


Assuntos
Cromossomos , Genômica/métodos , Alga Marinha/genética , Software , Humanos
9.
Bioinformatics ; 36(12): 3645-3651, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311033

RESUMO

MOTIVATION: Hi-C contact maps reflect the relative contact frequencies between pairs of genomic loci, quantified through deep sequencing. Differential analyses of these maps enable downstream biological interpretations. However, the multi-fractal nature of the chromatin polymer inside the cellular envelope results in contact frequency values spanning several orders of magnitude: contacts between loci pairs separated by large genomic distances are much sparser than closer pairs. The same is true for poorly covered regions, such as repeated sequences. Both distant and poorly covered regions translate into low signal-to-noise ratios. There is no clear consensus to address this limitation. RESULTS: We present Serpentine, a fast, flexible procedure operating on raw data, which considers the contacts in each region of a contact map. Binning is performed only when necessary on noisy regions, preserving informative ones. This results in high-quality, low-noise contact maps that can be conveniently visualized for rigorous comparative analyses. AVAILABILITY AND IMPLEMENTATION: Serpentine is available on the PyPI repository and https://github.com/koszullab/serpentine; documentation and tutorials are provided at https://serpentine.readthedocs.io/en/latest/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Cromatina , Genômica
10.
Front Genet ; 10: 753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481973

RESUMO

Characterizing the complete genomic structure of complex microbial communities would represent a key step toward the understanding of their diversity, dynamics, and evolution. Current metagenomics approaches aiming at this goal are typically done by analyzing millions of short DNA sequences directly extracted from the environment. New experimental and computational approaches are constantly sought for to improve the analysis and interpretation of such data. We developed MetaTOR, an open-source computational solution that bins DNA contigs into individual genomes according to their 3D contact frequencies. Those contacts are quantified by chromosome conformation capture experiments (3C, Hi-C), also known as proximity-ligation approaches, applied to metagenomics samples (meta3C). MetaTOR was applied on 20 meta3C libraries of mice gut microbiota. We quantified the program ability to recover high-quality metagenome-assembled genomes (MAGs) from metagenomic assemblies generated directly from the meta3C libraries. Whereas nine high-quality MAGs are identified in the 148-Mb assembly generated using a single meta3C library, MetaTOR identifies 82 high-quality MAGs in the 763-Mb assembly generated from the merged 20 meta3C libraries, corresponding to nearly a third of the total assembly. Compared to the hybrid binning softwares MetaBAT or CONCOCT, MetaTOR recovered three times more high-quality MAGs. These results underline the potential of 3C-/Hi-C-based approaches in metagenomic projects.

12.
Biotechnol Biofuels ; 10: 151, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28616075

RESUMO

BACKGROUND: The presence of low complexity and repeated regions in genomes often results in difficulties to assemble sequencing data into full chromosomes. However, the availability of full genome scaffolds is essential to several investigations, regarding for instance the evolution of entire clades, the analysis of chromosome rearrangements, and is pivotal to sexual crossing studies. In non-conventional but industrially relevant model organisms, such as the ascomycete Trichoderma reesei, a complete genome assembly is seldom available. RESULTS: The chromosome scaffolds of T. reesei QM6a and Rut-C30 strains have been generated using a contact genomic/proximity ligation genomic approach. The original reference assembly, encompassing dozens of scaffolds, was reorganized into two sets of seven chromosomes. Chromosomal contact data also allowed to characterize 10-40 kb, gene-free, AT-rich (76%) regions corresponding to the T. reesei centromeres. Large chromosomal rearrangements (LCR) in Rut-C30 were then characterized, in agreement with former studies, and the position of LCR breakpoints used to assess the likely chromosome structure of other T. reesei strains [QM9414, CBS999.97 (1-1, re), and QM9978]. In agreement with published results, we predict that the numerous chromosome rearrangements found in highly mutated industrial strains may limit the efficiency of sexual reproduction for their improvement. CONCLUSIONS: The GRAAL program allowed us to generate the karyotype of the Rut-C30 strain, and from there to predict chromosome structure for most T. reesei strains for which sequence is available. This method that exploits proximity ligation sequencing approach is a fast, cheap, and straightforward way to characterize both chromosome structure and centromere sequences and is likely to represent a popular convenient alternative to expensive and work-intensive resequencing projects.

13.
Sci Adv ; 3(2): e1602105, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28232956

RESUMO

The biochemical activities of microbial communities, or microbiomes, are essential parts of environmental and animal ecosystems. The dynamics, balance, and effects of these communities are strongly influenced by phages present in the population. Being able to characterize bacterium-phage relationships is therefore essential to investigate these ecosystems to the full extent of their complexity. However, this task is currently limited by (i) the ability to characterize complete bacterial and viral genomes from a complex mix of species and (ii) the difficulty to assign phage sequences to their bacterial hosts. We show that both limitations can be circumvented using meta3C, an experimental and computational approach that exploits the physical contacts between DNA molecules to infer their proximity. In a single experiment, dozens of bacterial and phage genomes present in a complex mouse gut microbiota were assembled and scaffolded de novo. The phage genomes were then assigned to their putative bacterial hosts according to the physical contacts between the different DNA molecules, opening new perspectives for a comprehensive picture of the genomic structure of the gut flora. Therefore, this work holds far-reaching implications for human health studies aiming to bridge the virome to the microbiome.


Assuntos
Bactérias , Bacteriófagos , Microbioma Gastrointestinal , Genoma Bacteriano , Genoma Viral , Animais , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...